Wave field reconstruction and phase imaging by electron diffractive imaging
Author(s) -
Jun Yamasaki
Publication year - 2020
Publication title -
microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.545
H-Index - 52
eISSN - 2050-5701
pISSN - 2050-5698
DOI - 10.1093/jmicro/dfaa063
Subject(s) - optics , diffraction , fourier transform , phase retrieval , phase (matter) , sample (material) , physics , iterative reconstruction , electron , image quality , field (mathematics) , phase problem , electron diffraction , image (mathematics) , computer science , mathematics , computer vision , quantum mechanics , pure mathematics , thermodynamics
In electron diffractive imaging, the phase image of a sample is reconstructed from its diffraction intensity through iterative calculations. The principle of this method is based on the Fourier transform relation between the real-space wave field transmitted by the sample and its Fraunhofer diffraction wave field. Since Gerchberg’s experimental work in 1972, various advancements have been achieved, which have substantially improved the quality of the reconstructed phase images and extended the applicable range of the method. In this review article, the principle of diffractive imaging, various experimental processes using electron beams and application to specific samples are explained in detail.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom