z-logo
open-access-imgOpen Access
Automated acquisition of vast numbers of electron holograms with atomic-scale phase information
Author(s) -
Yoshio Takahashi,
Tetsuya Akashi,
Atsuko Sato,
Toshiaki Tanigaki,
Hiroyuki Shinada,
Yasukazu Murakami
Publication year - 2020
Publication title -
microscopy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.545
H-Index - 52
eISSN - 2050-5701
pISSN - 2050-5698
DOI - 10.1093/jmicro/dfaa004
Subject(s) - holography , atomic units , scale (ratio) , electron , phase (matter) , computer science , physics , optics , nuclear physics , quantum mechanics
An automated acquisition system for collecting a large number of electron holograms, to improve the statistical precision of phase analysis, was developed. A technique for shifting the electron beam in combination with stage movement allows data to be acquired over a wide area of a TEM-specimen grid. Undesired drift in the hologram position, which may occur during the hologram acquisition, can be corrected in real time by automated detection of the interference-fringe region in an image. To demonstrate the usefulness of the developed automated hologram acquisition system, gold nanoparticles dispersed on a carbon foil were observed with a 1.2-MV atomic resolution holography electron microscope. The system could obtain 1024 holograms, which provided phase maps for more than 500 nanoparticles with a lateral resolution of 0.14 nm, in just 1 h. The observation results revealed an anomalous increase in mean inner potential for a particle size smaller than 4 nm. The developed automated hologram acquisition system can be applied to improve the precision of phase measurement by averaging many phase images, as demonstrated by single particle analysis for biological entities. Moreover, the system makes it possible to study electrostatic potential of catalysts and other functional nanoparticles at atomic resolution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom