Evolution of New Hormone Function: Loss and Gain of a Receptor
Author(s) -
David M. Irwin,
Keith S. Wong
Publication year - 2005
Publication title -
journal of heredity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.99
H-Index - 92
eISSN - 1471-8505
pISSN - 0022-1503
DOI - 10.1093/jhered/esi024
Subject(s) - biology , proglucagon , glucagon , glucagon receptor , receptor , zebrafish , vertebrate , glucagon like peptide 1 , genetics , gene , medicine , endocrinology , microbiology and biotechnology , hormone , type 2 diabetes , diabetes mellitus
The vertebrate proglucagon gene encodes three glucagon-like sequences (glucagon, glucagon-like peptide-1 [GLP-1], and glucagon-like peptide 2 [GLP-2]) that have distinct functions in regulating metabolism in mammals. In contrast, glucagon and GLP-1 have similar physiological actions in fish, that of mammalian glucagon. We have identified sequences similar to receptors for proglucagon-derived peptides from the genomes of two fish (pufferfish and zebrafish), a frog (Xenopus tropicalis), and a bird (chicken). Phylogenetic analysis of the receptor sequences suggested an explanation for the divergent function of GLP-1 in fish and mammals. The phylogeny of our predicted and characterized receptors for proglucagon-derived peptides demonstrate that receptors for glucagon, GLP-1, and GLP-2 have an origin before the divergence of fish and mammals; however, fish have lost the gene encoding the GLP-1 class of receptors, and likely the incretin action of GLP-1. Receptors that bind GLP-1, but yield glucagon-like action, have been characterized in goldfish and zebrafish, and these sequences are most closely related to glucagon receptors. Both pufferfish and zebrafish have a second glucagon receptor-like gene that is most closely related to the characterized goldfish glucagon receptor. The phylogeny of glucagon receptor-like genes in fish indicates that a duplication of the glucagon receptor gene occurred on the ancestral fish lineage, and could explain the shared action of glucagon and GLP-1. We suggest that the binding specificity of one of the duplicated glucagon receptors has diverged, yielding receptors for GLP-1 and glucagon, but that ancestral downstream signaling has been maintained, resulting in both receptors retaining glucagon-stimulated downstream effects.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom