Multiple Assays Indicate Varying Levels of Cross Resistance in Cry3Bb1-Selected Field Populations of the Western Corn Rootworm to mCry3A, eCry3.1Ab, and Cry34/35Ab1
Author(s) -
Sarah N. Zukoff,
K. R. Ostlie,
Bruce Potter,
Lisa N. Meihls,
Anthony Zukoff,
Lee French,
Mark R. Ellersieck,
B. Wade French,
Bruce E. Hibbard
Publication year - 2016
Publication title -
journal of economic entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.818
H-Index - 101
eISSN - 1938-291X
pISSN - 0022-0493
DOI - 10.1093/jee/tow073
Subject(s) - western corn rootworm , biology , genetically modified maize , population , agronomy , genetically modified crops , zea mays , transgene , genetics , gene , demography , sociology
Minnesota populations of Diabrotica virgifera virgifera LeConte, the western corn rootworm, surviving Cry3Bb1-expressing corn in the field and western corn rootworm populations assumed to be susceptible to all Bt proteins were evaluated for susceptibility to Cry3Bb1, mCry3A, eCry3.1Ab, and Cry34/35Ab1 in diet assays and three different plant-based assays. Rootworm populations originating from Cry3Bb1 fields and that consistently experienced greater than expected damage had increased survival and larval growth compared to control populations assayed on Cry3Bb1 as well as mCry3a and eCry3.1Ab. Cross resistance was documented between Cry3Bb1 and both mCry3A and eCry3.1Ab as single toxins. Despite very high resistance ratios in some comparisons, cross resistance was not complete and also varied with the population being evaluated, the trait measured, and the susceptible rootworm population used for comparison. Regardless of resistance and cross resistance, all proteins, even Cry3Bb1, retained some efficacy in terms of either reducing rootworm larval growth, protecting plants from damage, or both, for all rootworm populations evaluated. For one Cry3Bb1-selected population, a resistance ratio of 9.1-fold was found to Cry34/35Ab1 when evaluating EC 50 values relative to a susceptible control population; however, resistance to Cry34/35Ab1 was not evident in all assays in this population. The United States Environmental Protection Agency recently suggested eliminating diet assays as part of the Bt resistance monitoring process. However, given the variability of responses of western corn rootworm populations to different proteins in different assays, both plant and diet assays are needed as options for detecting and fully characterizing resistance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom