Effects of Tetracycline and Rifampicin Treatments on the Fecundity of theWolbachia-Infected Host,Tribolium confusum(Coleoptera: Tenebrionidae)
Author(s) -
Yipu Li,
Paul G. Fields,
BaoPing Pang,
Kevin D. Floate
Publication year - 2016
Publication title -
journal of economic entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.818
H-Index - 101
eISSN - 1938-291X
pISSN - 0022-0493
DOI - 10.1093/jee/tow067
Subject(s) - wolbachia , biology , fecundity , cytoplasmic incompatibility , tetracycline , offspring , rifampicin , host (biology) , reproduction , antibiotics , sex ratio , toxicology , zoology , microbiology and biotechnology , genetics , demography , pregnancy , population , sociology
We examined the effects of Wolbachia bacteria on the reproduction of the flour beetle Tribolium confusum (Coleoptera: Tenebrionidae) using different antibiotics and across generations. We first removed infections by rearing insects on a diet with tetracycline (T; 1.0, 2.0, 3.0, 5.0, 10.0 mg/g) or rifampicin (R; 0.1, 0.2, 0.3, 0.5, 1.0 mg/g). We then performed experimental crosses using adults two generations (G2) and four generations (G4) removed from antibiotic treatments. Results showed that use of rifampicin more readily cured infections. Egg hatch from crosses of uninfected females and infected males was 0, but averaged 84 to 91% for eggs from all other crosses. Elevated fecundity was observed for T-G2 females, but not for T-G4, R-G2, or R-G4 females. Cross type had little or no effect on the sex of F 1 offspring, which averaged 52% female. These collective results support previous findings that show that Wolbachia in T. confusum causes 100% cytoplasmic incompatibility and emphasize that the antibiotic treatment used to remove infections may have additional consequences (e.g., elevated fecundity) that may not be apparent in subsequent generations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom