z-logo
open-access-imgOpen Access
Managing Fall Armyworm in Africa: Can Bt Maize Sustainably Improve Control?
Author(s) -
J. van den Berg,
B. M. Prasanna,
Charles A. O. Midega,
Pamela C. Ronald,
Yves Carrière,
Bruce E. Tabashnik
Publication year - 2021
Publication title -
journal of economic entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.818
H-Index - 101
eISSN - 1938-291X
pISSN - 0022-0493
DOI - 10.1093/jee/toab161
Subject(s) - fall armyworm , biology , genetically modified maize , bacillus thuringiensis , agronomy , context (archaeology) , integrated pest management , intercropping , genetically modified crops , pest analysis , pest control , food security , biological pest control , agroforestry , agriculture , spodoptera , horticulture , ecology , transgene , paleontology , biochemistry , genetics , gene , bacteria , recombinant dna
The recent invasion of Africa by fall armyworm, Spodoptera frugiperda, a lepidopteran pest of maize and other crops, has heightened concerns about food security for millions of smallholder farmers. Maize genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) is a potentially useful tool for controlling fall armyworm and other lepidopteran pests of maize in Africa. In the Americas, however, fall armyworm rapidly evolved practical resistance to maize producing one Bt toxin (Cry1Ab or Cry1Fa). Also, aside from South Africa, Bt maize has not been approved for cultivation in Africa, where stakeholders in each nation will make decisions about its deployment. In the context of Africa, we address maize production and use; fall armyworm distribution, host range, and impact; fall armyworm control tactics other than Bt maize; and strategies to make Bt maize more sustainable and accessible to smallholders. We recommend mandated refuges of non-Bt maize or other non-Bt host plants of at least 50% of total maize hectares for single-toxin Bt maize and 20% for Bt maize producing two or more distinct toxins that are each highly effective against fall armyworm. The smallholder practices of planting more than one maize cultivar and intercropping maize with other fall armyworm host plants could facilitate compliance. We also propose creating and providing smallholder farmers access to Bt maize that produces four distinct Bt toxins encoded by linked genes in a single transgene cassette. Using this novel Bt maize as one component of integrated pest management could sustainably improve control of lepidopteran pests including fall armyworm.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom