z-logo
open-access-imgOpen Access
Use of Digital Video Cameras to Determine the Efficacy of Two Trap Types for CapturingRhynchophorus palmarum(Coleoptera: Curculionidae)
Author(s) -
Ivan Milosavljević,
Christina D. Hoddle,
Agenor MafraNeto,
Francesc GómezMarco,
Mark S. Hoddle
Publication year - 2020
Publication title -
journal of economic entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.818
H-Index - 101
eISSN - 1938-291X
pISSN - 0022-0493
DOI - 10.1093/jee/toaa223
Subject(s) - trap (plumbing) , rhynchophorus , weevil , curculionidae , palm , biology , digital video , attraction , horticulture , botany , environmental science , physics , quantum mechanics , transmission (telecommunications) , environmental engineering , linguistics , philosophy , electrical engineering , engineering
The efficacies of two trap types, bucket and Picusan traps, for capturing and retaining Rhynchophorus palmarum (L.), an invasive palm pest responsible for killing thousands of ornamental Canary Islands date palms (Phoenix canariensis Chabaud [Arecales: Arecaceae]) in San Diego County, CA, were compared. Digital video data were analyzed to determine how R. palmarum behavior toward each trap type affected capture and retention rates. Videography was conducted 24 h/d, 7 d/wk, for more than 7 mo resulting in 20,211 h of digital data for analysis. Weevil attraction to traps was observed only during daylight hours and no patterns in diel activity were found. Neither trap type tested captured 100% of weevils attracted to traps. Bucket traps suspended 1.5 m above the ground attracted 30% more weevils than ground deployed Picusan traps. Of those weevils attracted to bucket traps, 89% entered, 82% escaped, and 18% that entered traps were retained. Weevils that were not retained spent an average of 19 min 20 s entering and exiting entry holes and walking and flying around the bucket trap. By contrast, Picusan traps captured 89% of weevils that entered the trap. The time between weevils arriving (via walking or flight) on the sides of the Picusan trap and retention in the trap ranged between 90 and 376 s. These visual observations suggest that Picusan traps are more efficient than bucket traps for R. palmarum capture.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom