z-logo
open-access-imgOpen Access
Detached Leaf Assay to Screen for Host Plant Resistance to Helicoverpa armigera
Author(s) -
H. C. Sharma,
G. Pampapathy,
Mukesh K. Dhillon,
T. J. RidsdillSmith
Publication year - 2005
Publication title -
journal of economic entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.818
H-Index - 101
eISSN - 1938-291X
pISSN - 0022-0493
DOI - 10.1093/jee/98.2.568
Subject(s) - biology , helicoverpa armigera , cajanus , pest analysis , antibiosis , helicoverpa , germplasm , agronomy , cultivar , arachis hypogaea , infestation , gossypium , horticulture , botany , larva , genetics , bacteria
The noctuid Helicoverpa armigera (Hübner) is a major insect pest of chickpea Cicer arietinum L., pigeonpea Cajanus cajan (L.) Millsp., peanut Arachis hypogaea L., and cotton Gossypium spp., and host plant resistance is an important component for managing this pest in different crops. Because of variations in insect density and staggered flowering of the test material, it is difficult to identify cultivars with stable resistance to H. armigera across seasons and locations. To overcome these problems, we standardized the detached leaf assay to screen for resistance to this pest in chickpea, pigeonpea, peanut, and cotton under uniform insect pressure under laboratory conditions. Terminal branch (three to four fully expanded leaves) of chickpea, first fully expanded leaf of cotton, trifoliate of pigeonpea, or quadrifoliate of peanut, embedded in 3% agar-agar in a plastic cup/jar of appropriate size (250-500-ml capacity) infested with 10-20 neonate larvae can be used to screen for resistance to H. armigera. This technique keeps the leaves in a turgid condition for approximately 1 wk. The experiments can be terminated when the larvae have caused > 80% leaf damage in the susceptible check or when differences in leaf feeding between the resistant and susceptible checks are maximum. Detached leaf assay can be used as a rapid screening technique to evaluate germplasm, segregating breeding materials, and mapping populations for resistance to H. armigera in a short span of time with minimal cost, and under uniform insect infestation. It also provides useful information on antibiosis component of resistance to the target insect pest.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom