z-logo
open-access-imgOpen Access
Suppression of Leaf Feeding and Oviposition of Phytophagous Ladybird Beetles (Coleoptera: Coccinellidae) by Chitinase Gene-transformed Phylloplane Bacteria and Their Specific Bacteriophages Entrapped in Alginate Gel Beads
Author(s) -
Y. Otsu,
Hirofumi Mori,
Kenji Komuta,
Hiroyuki Shimizu,
Souta Nogawa,
Yoshinori Matsuda,
Teruo omura,
Yasuyuki Sakuratani,
Yukio Tosa,
S. Mayama,
Hideyoshi Toyoda
Publication year - 2003
Publication title -
journal of economic entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.818
H-Index - 101
eISSN - 1938-291X
pISSN - 0022-0493
DOI - 10.1093/jee/96.3.555
Subject(s) - chitinase , biology , microbiology and biotechnology , coccinellidae , bacteria , escherichia coli , phyllosphere , botany , biochemistry , enzyme , gene , predator , ecology , genetics , predation
The chitinase gene-transformed strain KPM-007E/chi of Enterobacter cloacae was vitally entrapped in sodium alginate gel beads with its specific virulent bacteriophage EcP-01 to provide a new method for microbially digesting chitinous peritrophic membranes of phytophagous ladybird beetles Epilachna vigintioctopunctata. First, chitinase SH1 from a gram-positive bacterium Kurthia zopfii was overproduced by Escherichia coli cells and purified by affinity column chromatography. The purified enzyme effectively digested peritrophic membranes dissected from the ladybird beetles to expose epithelial tissues beneath the peritrophic membrane, and the beetles that had ingested chitinase after submergence in chitinase solution had considerably reduced their feeding on tomato leaves. KPM-007E/chi, entrapped in the alginate beads, released the chitinase. More chitinase was released when KPM-007E/chi was present with their specific virulent bacteriophage EcP-01 in the beads because of lysis of bacterial cells infected with the bacteriophages. This chitinase release from the microbial beads (containing KPM-007E/chi and EcP-01) was sufficient to digest the peritrophic membrane as well as to suppress feeding of bead-sprayed tomato leaves by the ladybird beetles. A daily supply of tomato leaves treated with the microbial beads considerably suppressed leaf feeding and oviposition by the ladybird beetles, suggesting a possible application of chitinase-secreting bacteria for suppressing herbivorous insect pests.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom