z-logo
open-access-imgOpen Access
Structure and context ofAcinetobactertransposons carrying theoxa23carbapenemase gene
Author(s) -
Steven J. Nigro,
Ruth M. Hall
Publication year - 2016
Publication title -
journal of antimicrobial chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.124
H-Index - 194
eISSN - 1460-2091
pISSN - 0305-7453
DOI - 10.1093/jac/dkv440
Subject(s) - transposable element , context (archaeology) , gene , biology , genetics , plasmid , insertion sequence , dna transposable elements , acinetobacter , microbiology and biotechnology , antibiotics , genome , paleontology
Theoxa23gene encoding the OXA-23 carbapenemase (and several minor variants of it) is widespread inAcinetobacter baumanniiclinical isolates and compromises treatment with carbapenem antibiotics. The gene is derived from the chromosome ofAcinetobacter radioresistenswhere it is an intrinsic gene, here designatedoxaAr InA. baumanniiand otherAcinetobacterspecies,oxa23is usually preceded by an IS, ISAba1, which supplies the strong promoter required for the gene to confer clinically relevant levels of resistance. TheoxaArgene appears to have been mobilized twice creating Tn2008and Tn2008B, both of which consist of a single ISAba1 and anA. radioresistens-derived fragment. Tn2006and Tn2009are clearly derived from Tn2008Band are each made up of Tn2008Bwith an additional segment of unknown origin and an additional ISAba1, creating a compound transposon. Tn2006, Tn2008and possibly Tn2008Bare globally disseminated, while Tn2009has as yet only been found in China. Of the four ISAba1-associated transposons, Tn2006has been most frequently observed worldwide and Tn2006in Tn6022, known as AbaR4, appears to contribute significantly to the dissemination ofoxa23 Moreover, AbaR4, Tn2006, Tn2008and Tn2009have each been found in conjugative plasmids, further facilitating their spread.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom