When sepsis persists: a review of MRSA bacteraemia salvage therapy
Author(s) -
Ravina Kullar,
George Sakoulas,
Stan Deresinski,
Sebastiaan J. van Hal
Publication year - 2015
Publication title -
journal of antimicrobial chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.124
H-Index - 194
eISSN - 1460-2091
pISSN - 0305-7453
DOI - 10.1093/jac/dkv368
Subject(s) - medicine , daptomycin , linezolid , salvage therapy , vancomycin , combination therapy , quinupristin , infective endocarditis , dalfopristin , fosfomycin , intensive care medicine , pharmacotherapy , endocarditis , methicillin resistant staphylococcus aureus , antibiotics , surgery , staphylococcus aureus , chemotherapy , biology , bacteria , microbiology and biotechnology , genetics
MRSA bacteraemia (MRSAB), including infective endocarditis, carries a high mortality rate, with up to 50% of patients failing initial therapy with vancomycin and requiring salvage therapy. Persistent MRSAB can be difficult to successfully eliminate, especially when source control is not possible due to an irremovable focus or the bacteraemia still persists despite surgical intervention. Although vancomycin and daptomycin are the only two antibiotics approved by the US FDA for the treatment of patients with MRSAB as monotherapy, the employment of novel strategies is required to effectively treat patients with persistent MRSAB and these may frequently involve combination drug therapy. Treatment strategies that are reviewed in this manuscript include vancomycin combined with a β-lactam, daptomycin-based therapy, ceftaroline-based therapy, linezolid-based therapy, quinupristin/dalfopristin, telavancin, trimethoprim/sulfamethoxazole-based therapy and fosfomycin-based therapy. We recommend that combination antibiotic therapy be considered for use in MRSAB salvage treatment.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom