Antiviral activity and molecular mechanism of an orally active respiratory syncytial virus fusion inhibitor
Author(s) -
Christopher Cianci,
Nicholas A. Meanwell,
Mark Krystal
Publication year - 2005
Publication title -
journal of antimicrobial chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.124
H-Index - 194
eISSN - 1460-2091
pISSN - 0305-7453
DOI - 10.1093/jac/dkh558
Subject(s) - heptad repeat , lipid bilayer fusion , coiled coil , virus , viral replication , biology , virology , paramyxoviridae , gp41 , chemistry , biochemistry , peptide sequence , genetics , viral disease , antibody , gene , epitope
BMS-433771 is an orally bioavailable respiratory syncytial virus (RSV) inhibitor, functioning through inhibition of viral F protein-induced membrane fusion. The compound is active against both A and B groups of RSV, with an average EC(50) of 20 nM. BMS-433771 is also efficacious against RSV infection in two rodent models when dosed orally prior to infection. The compound possesses good pharmacokinetic properties, while maintaining a favourable toxicity profile. Consequently, BMS-433771 is well suited for further clinical evaluation in humans. Direct affinity labelling studies indicate that the compound binds in a hydrophobic cavity within the trimeric N-terminal heptad repeat. During the fusion process, this heptad repeat associates with a C-terminal heptad repeat to form a six helical coiled-coil bundle (or trimer-of-hairpins), and BMS-433771 presumably interferes with the functional association of these heptad repeats. The fusion protein of many other class 1 fusion viruses, such as HIV and influenza, form similar hairpin structures as a prelude to membrane fusion. The identification of BMS-433771 provides a proof of concept for small molecule inhibitors that target the formation of the six helical coiled-coil structure, which could be a prototype for the development of similar antivirals against other class 1 fusion viruses.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom