Investigation of the effect of the adsorbent DAV131A on the propensity of moxifloxacin to induce simulated Clostridioides (Clostridium) difficile infection (CDI) in an in vitro human gut model
Author(s) -
C. H. Chilton,
G. S. Crowther,
Christine Miossec,
Jean de Gunzburg,
Antoine Andremont,
Mark H. Wilcox
Publication year - 2020
Publication title -
journal of antimicrobial chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.124
H-Index - 194
eISSN - 1460-2091
pISSN - 0305-7453
DOI - 10.1093/jac/dkaa062
Subject(s) - moxifloxacin , bacteroides fragilis , microbiology and biotechnology , clostridium difficile , antimicrobial , antibiotics , biology , clostridioides , feces , spore
Background Clostridioides difficile infection (CDI) remains a high burden worldwide. DAV131A, a novel adsorbent, reduces residual gut antimicrobial levels, reducing CDI risk in animal models. Objectives We used a validated human gut model to investigate the efficacy of DAV131A in preventing moxifloxacin-induced CDI. Methods C. difficile (CD) spores were inoculated into two models populated with pooled human faeces. Moxifloxacin was instilled (43 mg/L, once daily, 7 days) alongside DAV131A (5 g in 18 mL PBS, three times daily, 14 days, Model A), or PBS (18 mL, three times daily, 14 days, Model B). Selected gut microbiota populations, CD total counts, spore counts, cytotoxin titre and antimicrobial concentrations (HPLC) were monitored daily. We monitored for reduced susceptibility of CD to moxifloxacin. Growth of CD in faecal filtrate and medium in the presence/absence of DAV131A, or in medium pre-treated with DAV131A, was also investigated. Results DAV131A instillation reduced active moxifloxacin levels to below the limit of detection (50 ng/mL), and prevented microbiota disruption, excepting Bacteroides fragilis group populations, which declined by ∼3 log10 cfu/mL. DAV131A delayed onset of simulated CDI by ∼2 weeks, but did not prevent CD germination and toxin production. DAV131A prevented emergence of reduced susceptibility of CD to moxifloxacin. In batch culture, DAV131A had minor effects on CD vegetative growth, but significantly reduced toxin/spores (P < 0.005). Conclusions DAV131A reduced moxifloxacin-induced microbiota disruption and emergence of antibiotic-resistant CD. Delayed onset of CD germination and toxin production indicates further investigations are warranted to understand the clinical benefits of DAV131A in CDI prevention.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom