Human skin-derived keratinocytes and fibroblasts co-cultured on 3D poly ε-caprolactone scaffold support in vitro HSC differentiation into T-lineage committed cells
Author(s) -
Loredana Palamaro,
Vincenzo Guarino,
Giulia Scalia,
Dario Antonini,
Luigia De Falco,
Gabriella Bianchino,
Anna Fusco,
Rosa Romano,
Vitina Grieco,
Caterina Missero,
Luigi Del Vecchio,
Luigi Ambrosio,
Claudio Pignata
Publication year - 2013
Publication title -
international immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.86
H-Index - 134
eISSN - 1460-2377
pISSN - 0953-8178
DOI - 10.1093/intimm/dxt035
Subject(s) - stromal cell , microbiology and biotechnology , stem cell , biology , cellular differentiation , haematopoiesis , immunology , cancer research , gene , biochemistry
In humans, the thymus is the primary lymphoid organ able to support the development of T cells through its three-dimensional (3D) organization of the thymic stromal cells. Since a remarkable number of similarities are shared between the thymic epithelial cells (TECs) and skin-derived keratinocytes and fibroblasts, in this study we used human keratinocytes seeded with fibroblasts on the 3D poly ε-caprolactone scaffold to evaluate their ability to replace TECs in supporting T-cell differentiation from human haematopoietic stem cells (HSCs). We observed that in the multicellular biocomposite, early thymocytes expressing CD7(+)CD1a(+), peculiar markers of an initial T-cell commitment, were de novo generated. Molecular studies of genes selectively expressed during T-cell development revealed that TAL1 was down-regulated and Spi-B was up-regulated in the cell suspension, consistently with a T-cell lineage commitment. Moreover, PTCRA and RAG2 expression was detected, indicative of a recombinant activity, required for the generation of a T-cell receptor repertoire. Our results indicate that in the multicellular biocomposite, containing skin-derived elements in the absence of thymic stroma, HSCs do start differentiating toward a T-cell lineage commitment. In conclusion, the construct described in this study exerts some properties of a lymphoid organoid, suitable for future clinical applications in cell-based therapies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom