Circadian Clocks in the Cnidaria: Environmental Entrainment, Molecular Regulation, and Organismal Outputs
Author(s) -
Adam M. Reitzel,
Ann M. Tarrant,
Oren Levy
Publication year - 2013
Publication title -
integrative and comparative biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.328
H-Index - 123
eISSN - 1557-7023
pISSN - 1540-7063
DOI - 10.1093/icb/ict024
Subject(s) - biology , circadian clock , cnidaria , molecular clock , circadian rhythm , entrainment (biomusicology) , evolutionary biology , phylum , jellyfish , ecology , zoology , neuroscience , phylogenetics , genetics , gene , rhythm , philosophy , coral , aesthetics
The circadian clock is a molecular network that translates predictable environmental signals, such as light levels, into organismal responses, including behavior and physiology. Regular oscillations of the molecular components of the clock enable individuals to anticipate regularly fluctuating environmental conditions. Cnidarians play important roles in benthic and pelagic marine environments and also occupy a key evolutionary position as the likely sister group to the bilaterians. Together, these attributes make members of this phylum attractive as models for testing hypotheses on roles for circadian clocks in regulating behavior, physiology, and reproduction as well as those regarding the deep evolutionary conservation of circadian regulatory pathways in animal evolution. Here, we review and synthesize the field of cnidarian circadian biology by discussing the diverse effects of daily light cycles on cnidarians, summarizing the molecular evidence for the conservation of a bilaterian-like circadian clock in anthozoan cnidarians, and presenting new empirical data supporting the presence of a conserved feed-forward loop in the starlet sea anemone, Nematostella vectensis. Furthermore, we discuss critical gaps in our current knowledge about the cnidarian clock, including the functions directly regulated by the clock and the precise molecular interactions that drive the oscillating gene-expression patterns. We conclude that the field of cnidarian circadian biology is moving rapidly toward linking molecular mechanisms with physiology and behavior.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom