z-logo
open-access-imgOpen Access
Reply: Predicting sperm extraction in non-obstructive azoospermia patients: a machine-learning perspective
Author(s) -
Atif Zeadna,
N Khateeb,
Lior Rokach,
Yotam Lior,
Iris HarVardi,
Avi Harlev,
Mahmoud Huleihel,
Eitan Lunenfeld,
Eliahu Levitas
Publication year - 2020
Publication title -
human reproduction
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 2.446
H-Index - 226
eISSN - 1460-2350
pISSN - 0268-1161
DOI - 10.1093/humrep/deaa259
Subject(s) - perspective (graphical) , testicular sperm extraction , obstructive azoospermia , azoospermia , sperm , andrology , gynecology , medicine , computer science , biology , artificial intelligence , infertility , pregnancy , genetics

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom