Differential protective effects of connective tissue growth factor against Aβ neurotoxicity on neurons and glia
Author(s) -
Cheng-Ning Yang,
Minfang Wu,
ChungChih Liu,
WeiHung Jung,
YuChin Chang,
Wang-Pao Lee,
YoungJi Shiao,
ChiaLin Wu,
HorngHuei Liou,
SzeKwan Lin,
ChihChiang Chan
Publication year - 2017
Publication title -
human molecular genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.811
H-Index - 276
eISSN - 1460-2083
pISSN - 0964-6906
DOI - 10.1093/hmg/ddx278
Subject(s) - biology , connective tissue , neurotoxicity , growth factor , differential (mechanical device) , microbiology and biotechnology , differential effects , neuroglia , neuroscience , anatomy , central nervous system , toxicity , biochemistry , genetics , endocrinology , medicine , engineering , aerospace engineering , receptor
Impaired clearance of amyloid-β peptide (Aβ) leads to abnormal extracellular accumulation of this neurotoxic protein that drives neurodegeneration in sporadic Alzheimer's disease (AD). Connective tissue growth factor (CTGF/CCN2) expression is elevated in plaque-surrounding astrocytes in AD patients. However, the role of CTGF in AD pathogenesis remains unclear. Here we characterized the neuroprotective activity of CTGF. We found that CTGF facilitated Aβ uptake and subsequent degradation within primary glia and neuroblastoma cells. CTGF enhanced extracellular Aβ degradation via membrane-bound matrix metalloproteinase-14 (MMP14) in glia and extracellular MMP13 in neurons. In the brain of a Drosophila AD model, glial-expression of CTGF reduced Aβ deposits, improved locomotor function, and rescued memory deficits. Neuroprotective potential of CTGF against Aβ42-induced photoreceptor degeneration was disrupted through silencing MMPs. Therefore, CTGF may represent a node for potential AD therapeutics as it intervenes in glia-neuron communication via specific MMPs to alleviate Aβ neurotoxicity in the central nervous system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom