
Mutation of the gene encoding the enamel-specific protein, enamelin, causes autosomal-dominant amelogenesis imperfecta
Author(s) -
M. Helen Rajpar,
Kathryn Harley,
Chris Laing,
Robin Davies,
Michael J. Dixon
Publication year - 2001
Publication title -
human molecular genetics online/human molecular genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.811
H-Index - 276
eISSN - 1460-2083
pISSN - 0964-6906
DOI - 10.1093/hmg/10.16.1673
Subject(s) - amelogenesis imperfecta , amelogenin , biology , genetics , locus (genetics) , gene , intron , mutation , phenotype , x chromosome , enamel paint , medicine , dentistry
Amelogenesis imperfecta (AI) is a group of inherited defects of dental enamel formation that shows both clinical and genetic heterogeneity. To date, mutations in the gene encoding amelogenin have been shown to underlie a subset of the X-linked recessive forms of AI. Although none of the genes underlying autosomal-dominant or autosomal-recessive AI have been identified, a locus for a local hypoplastic form has been mapped to human chromosome 4q11-q21. In the current investigation, we have analysed a family with an autosomal-dominant, smooth hypoplastic form of AI. Our results have shown that a splicing mutation in the splice donor site of intron 7 of the gene encoding the enamel-specific protein enamelin underlies the phenotype observed in this family. This is the first autosomal-dominant form of AI for which the genetic mutation has been identified. As this type of AI is clinically distinct from that localized previously to chromosome 4q11-q21, these findings highlight the need for a molecular classification of this group of disorders.