z-logo
open-access-imgOpen Access
Mantis: flexible and consensus-driven genome annotation
Author(s) -
Pedro Queirós,
Francesco Delogu,
Oskar Hickl,
Patrick May,
Paul Wilmes
Publication year - 2021
Publication title -
gigascience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.947
H-Index - 54
ISSN - 2047-217X
DOI - 10.1093/gigascience/giab042
Subject(s) - annotation , mantis , computer science , genome , computational biology , biology , artificial intelligence , genetics , gene , ecology
The rapid development of the (meta-)omics fields has produced an unprecedented amount of high-resolution and high-fidelity data. Through the use of these datasets we can infer the role of previously functionally unannotated proteins from single organisms and consortia. In this context, protein function annotation can be described as the identification of regions of interest (i.e., domains) in protein sequences and the assignment of biological functions. Despite the existence of numerous tools, challenges remain in terms of speed, flexibility, and reproducibility. In the big data era, it is also increasingly important to cease limiting our findings to a single reference, coalescing knowledge from different data sources, and thus overcoming some limitations in overly relying on computationally generated data from single sources.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom