z-logo
open-access-imgOpen Access
Mechanisms of directed mutation.
Author(s) -
Patricia L. Foster,
John Cairns
Publication year - 1992
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/131.4.783
Subject(s) - biology , mutant , genetics , lac operon , suppressor mutation , mutation , gene , dna , operon , lac repressor , transcription (linguistics) , antitermination , dna repair , dna replication , allele , escherichia coli , linguistics , philosophy
Spontaneous mutants arise among nondividing populations of Escherichia coli in apparent response to selective conditions. In this report we investigate several hypotheses to account for the role of selection in the production of these "directed" or "adaptive" mutations. We found that the Lac+ phenotypes of some mutants that arise late after lactose selection are due to suppressor mutations that are unlinked to the mutant lacZ allele; thus the production of these Lac+ mutants does not require an information flow from successful proteins back to the DNA that encodes them. Transcriptional induction of the lac operon, even in the presence of another, utilizable carbon source, did not stimulate the occurrence of Lac+ mutants in the absence of lactose, indicating that the role of the selective agent is not merely to induce transcription. The absence of two DNA repair pathways-methyl-directed mismatch repair and alkylation repair-also did not result in an accumulation of Lac+ mutants in the absence of lactose, suggesting that these repair pathways are not normally responsible for correcting transient variants that might arise in the absence of selection. However, in one case the Lac+ mutation is likely to be due to a miscoding lesion occurring on the nontranscribed DNA strand, indicating that, at least in this instance, DNA replication is required before directed mutations can arise.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom