z-logo
open-access-imgOpen Access
Homogenization of Tandemly Repeated Nucleotide Sequences by Distance-Dependent Nucleotide Sequence Conversion
Author(s) -
Jan Dvořák,
Danny L. Jue,
Michael Lassner
Publication year - 1987
Publication title -
genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.792
H-Index - 246
eISSN - 1943-2631
pISSN - 0016-6731
DOI - 10.1093/genetics/116.3.487
Subject(s) - biology , genetics , nucleotide , nucleic acid sequence , sequence (biology) , repeated sequence , dna , gene , genome
Previous work revealed that recurrent mutations (= mutation occurring more than once) in the tandemly repeated arrays present in nontranscribed spacers (NTS) of ribosomal RNA genes (rDNA) are clustered, i.e., they most frequently occur in repeats with adjacent or alternate distribution. A possible explanation is that the likelihood of heteroduplex formation, a prerequisite of gene conversion, decreases with the distance between repeats. To test this possibility, evolution of an array of 11 initially homogeneous repeats was computer simulated using three models, two assuming that the likelihood of heteroduplex formation decreases with increasing distance between the repeats and one assuming that it is constant. Patterns of mutation distribution obtained in computer simulations were compared with the distribution of mutations found in the repeated arrays in the NTS of seven rDNA clones. The patterns of mutations generated by the models assuming that the likelihood of heteroduplex formation decreases as distance between the repeats increases agreed with the patterns observed in rDNA; the patterns generated by the model assuming that the likelihood is independent of distance between repeats disagreed with the patterns observed in the rDNA clones. The topology of the heteroduplex formed between DNA in adjacent repeats predicts that the most frequently occurring conversions in the NTS repeated arrays will be shorter than the length of the repeat. The topology of the heteroduplex also predicts that if the heteroduplex leads to crossing over a circular repeat is excised. It is speculated that the circle can transpose or can be amplified via rolling circle replication and subsequently transpose. It is also shown that homogenization of the NTS repeated arrays proceeds at different rates in different species.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom