z-logo
open-access-imgOpen Access
A Novel Test for Absolute Fit of Evolutionary Models Provides a Means to Correctly Identify the Substitution Model and the Model Tree
Author(s) -
Vadim Goremykin
Publication year - 2019
Publication title -
genome biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.702
H-Index - 74
ISSN - 1759-6653
DOI - 10.1093/gbe/evz167
Subject(s) - estimator , tree (set theory) , substitution (logic) , phylogenetic tree , statistics , model selection , range (aeronautics) , computer science , sequence (biology) , test data , type i and type ii errors , biology , mathematics , genetics , combinatorics , materials science , composite material , gene , programming language
A novel test is described that visualizes the absolute model-data fit of the substitution and tree components of an evolutionary model. The test utilizes statistics based on counts of character state matches and mismatches in alignments of observed and simulated sequences. This comparison is used to assess model-data fit. In simulations conducted to evaluate the performance of the test, the test estimator was able to identify both the correct tree topology and substitution model under conditions where the Goldman-Cox test-which tests the fit of a substitution model to sequence data and is also based on comparing simulated replicates with observed data-showed high error rates. The novel test was found to identify the correct tree topology within a wide range of DNA substitution model misspecifications, indicating the high discriminatory power of the test. Use of this test provides a practical approach for assessing absolute model-data fit when testing phylogenetic hypotheses.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom