z-logo
open-access-imgOpen Access
Phenotypic and Genomic Local Adaptation across Latitude and Altitude in Populus trichocarpa
Author(s) -
Man Zhang,
Haktan Suren,
Jason A. Holliday
Publication year - 2019
Publication title -
genome biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.702
H-Index - 74
ISSN - 1759-6653
DOI - 10.1093/gbe/evz151
Subject(s) - populus trichocarpa , biology , adaptation (eye) , phenotype , altitude (triangle) , local adaptation , evolutionary biology , phenotypic trait , latitude , genetics , genome , gene , neuroscience , population , demography , sociology , geometry , mathematics , geodesy , geography
Local adaptation to climate allows plants to cope with temporally and spatially heterogeneous environments, and parallel phenotypic clines provide a natural experiment to uncover the genomic architecture of adaptation. Though extensive effort has been made to investigate the genomic basis of local adaptation to climate across the latitudinal range of tree species, less is known for altitudinal clines. We used exome capture to genotype 451 Populus trichocarpa genotypes across altitudinal and latitudinal gradients spanning the natural species range, and phenotyped these trees for a variety of adaptive traits in two common gardens. We observed clinal variation in phenotypic traits across the two transects, which indicates climate-driven selection, and coupled gene-based genotype-phenotype and genotype-environment association scans to identify imprints of climatic adaptation on the genome. Although many of the phenotype- and climate-associated genes were unique to one transect, we found evidence of parallelism between latitude and altitude, as well as significant convergence when we compared our outlier genes with those putatively involved in climatic adaptation in two gymnosperm species. These results suggest that not only genomic constraint during adaptation to similar environmental gradients in poplar but also different environmental contexts, spatial scale, and perhaps redundant function among potentially adaptive genes and polymorphisms lead to divergent adaptive architectures.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom