z-logo
open-access-imgOpen Access
Lost and Found: Return of the Inverted Repeat in the Legume Clade Defined by Its Absence
Author(s) -
InSu Choi,
Robert K. Jansen,
Tracey A. Ruhlman
Publication year - 2019
Publication title -
genome biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.702
H-Index - 74
ISSN - 1759-6653
DOI - 10.1093/gbe/evz076
Subject(s) - biology , chloroplast dna , plastid , clade , inverted repeat , evolutionary biology , genome , genetics , phylogenetic tree , botany , gene , chloroplast
The plant genome comprises a coevolving, integrated genetic system housed in three subcellular compartments: the nucleus, mitochondrion, and the plastid. The typical land plant plastid genome (plastome) comprises the sum of repeating units of 130-160 kb in length. The plastome inverted repeat (IR) divides each plastome monomer into large and small single copy regions, an architecture highly conserved across land plants. There have been varying degrees of expansion or contraction of the IR, and in a few distinct lineages, including the IR-lacking clade of papilionoid legumes, one copy of the IR has been lost. Completion of plastome sequencing and assembly for 19 Medicago species and Trigonella foenum-graceum and comparative analysis with other IR-lacking clade taxa revealed modest divergence with regard to structural organization overall. However, one clade contained unique variation suggesting an ancestor had experienced repeat-mediated changes in plastome structure. In Medicago minima, a novel IR of ∼9 kb was confirmed and the role of repeat-mediated, recombination-dependent replication in IR reemergence is discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom