z-logo
open-access-imgOpen Access
Glutamine Codon Usage and polyQ Evolution in Primates Depend on the Q Stretch Length
Author(s) -
Pablo Mier,
Miguel A. AndradeNavarro
Publication year - 2018
Publication title -
genome biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.702
H-Index - 74
ISSN - 1759-6653
DOI - 10.1093/gbe/evy046
Subject(s) - glutamine , biology , amino acid , codon usage bias , transcriptome , genetics , evolutionary biology , stop codon , glutamine synthetase , phylogenetics , gene , genome , gene expression
Amino acid usage in a proteome depends mostly on its taxonomy, as it does the codon usage in transcriptomes. Here, we explore the level of variation in the codon usage of a specific amino acid, glutamine, in relation to the number of consecutive glutamine residues. We show that CAG triplets are consistently more abundant in short glutamine homorepeats (polyQ, four to eight residues) than in shorter glutamine stretches (one to three residues), leading to the evolutionary growth of the repeat region in a CAG-dependent manner. The length of orthologous polyQ regions is mostly stable in primates, particularly the short ones. Interestingly, given a short polyQ the CAG usage is higher in unstable-in-length orthologous polyQ regions. This indicates that CAG triplets produce the necessary instability for a glutamine stretch to grow. Proteins related to polyQ-associated diseases behave in a more extreme way, with longer glutamine stretches in human and evolutionarily closer nonhuman primates, and an overall higher CAG usage. In the light of our results, we suggest an evolutionary model to explain the glutamine codon usage in polyQ regions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom