z-logo
open-access-imgOpen Access
Transcriptomic Analysis of the Highly Derived Radial Body Plan of a Sea Urchin
Author(s) -
Jennifer A. Wygoda,
Jean Yang,
Maria Byrne,
Gregory A. Wray
Publication year - 2014
Publication title -
genome biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.702
H-Index - 74
ISSN - 1759-6653
DOI - 10.1093/gbe/evu070
Subject(s) - body plan , biology , echinoderm , sea urchin , metamorphosis , evolutionary biology , transcriptome , effector , rna seq , gene , gene expression , evolutionary developmental biology , larva , ecology , microbiology and biotechnology , genetics
With their complex life cycle and highly derived body plan, echinoderms are unique among bilaterians. Although early development has been intensively studied, the molecular mechanisms underlying development of the adult echinoderm and its unusual radial body plan are largely unknown. To investigate the evolution of developmental changes in gene expression underlying radial body plan development and metamorphosis, we assembled a reference transcriptome de novo and used RNA-seq to measure gene expression profiles across larval, metamorphic, and postmetamorphic life cycle phases in the sea urchin Heliocidaris erythrogramma. Our results present a high-resolution view of gene expression dynamics during the complex transition from pre- to postmetamorphic development and suggest that distinct sets of regulatory and effector proteins are used during different life history phases. These analyses provide an important foundation for more detailed analyses of the evolution of the radial adult body of echinoderms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom