z-logo
open-access-imgOpen Access
Reconstructing the Evolutionary History of a Highly Conserved Operon Cluster inGammaproteobacteriaandBacilli
Author(s) -
Gerrit Brandis
Publication year - 2021
Publication title -
genome biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.702
H-Index - 74
ISSN - 1759-6653
DOI - 10.1093/gbe/evab041
Subject(s) - operon , biology , gammaproteobacteria , genetics , genome , synteny , gene cluster , gene , most recent common ancestor , transposable element , pseudogene , mutant , 16s ribosomal rna
The evolution of gene order rearrangements within bacterial chromosomes is a fast process. Closely related species can have almost no conservation in long-range gene order. A prominent exception to this rule is a >40 kb long cluster of five core operons (secE-rpoBC-str-S10-spc-alpha) and three variable adjacent operons (cysS, tufB, and ecf) that together contain 57 genes of the transcriptional and translational machinery. Previous studies have indicated that at least part of this operon cluster might have been present in the last common ancestor of bacteria and archaea. Using 204 whole genome sequences, ∼2 Gy of evolution of the operon cluster were reconstructed back to the last common ancestors of the Gammaproteobacteria and of the Bacilli. A total of 163 independent evolutionary events were identified in which the operon cluster was altered. Further examination showed that the process of disconnecting two operons generally follows the same pattern. Initially, a small number of genes is inserted between the operons breaking the concatenation followed by a second event that fully disconnects the operons. While there is a general trend for loss of gene synteny over time, there are examples of increased alteration rates at specific branch points or within specific bacterial orders. This indicates the recurrence of relaxed selection on the gene order within bacterial chromosomes. The analysis of the alternation events indicates that segmental genome duplications and/or transposon-directed recombination play a crucial role in rearrangements of the operon cluster.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom