z-logo
open-access-imgOpen Access
Sexual Dimorphism through the Lens of Genome Manipulation, Forward Genetics, and Spatiotemporal Sequencing
Author(s) -
Katja R. Kasimatis,
Santiago SánchezRamírez,
Zachary Stevenson
Publication year - 2020
Publication title -
genome biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.702
H-Index - 74
ISSN - 1759-6653
DOI - 10.1093/gbe/evaa243
Subject(s) - biology , sexual dimorphism , evolutionary biology , sexual conflict , genetics , human evolutionary genetics , genome , sexual selection , genomics , computational biology , gene , zoology
Sexual reproduction often leads to selection that favors the evolution of sex-limited traits or sex-specific variation for shared traits. These sexual dimorphisms manifest due to sex-specific genetic architectures and sex-biased gene expression across development, yet the molecular mechanisms underlying these patterns are largely unknown. The first step is to understand how sexual dimorphisms arise across the genotype-phenotype-fitness map. The emergence of "4D genome technologies" allows for efficient, high-throughput, and cost-effective manipulation and observations of this process. Studies of sexual dimorphism will benefit from combining these technological advances (e.g., precision genome editing, inducible transgenic systems, and single-cell RNA sequencing) with clever experiments inspired by classic designs (e.g., bulked segregant analysis, experimental evolution, and pedigree tracing). This perspective poses a synthetic view of how manipulative approaches coupled with cutting-edge observational methods and evolutionary theory are poised to uncover the molecular genetic basis of sexual dimorphism with unprecedented resolution. We outline hypothesis-driven experimental paradigms for identifying genetic mechanisms of sexual dimorphism among tissues, across development, and over evolutionary time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom