z-logo
open-access-imgOpen Access
Selective Gene Loss of Visual and Olfactory Guanylyl Cyclase Genes Following the Two Rounds of Vertebrate-Specific Whole-Genome Duplications
Author(s) -
Matthias Gesemann,
Stephan C. F. Neuhauss
Publication year - 2020
Publication title -
genome biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.702
H-Index - 74
ISSN - 1759-6653
DOI - 10.1093/gbe/evaa192
Subject(s) - visual phototransduction , biology , vertebrate , gene duplication , gene , opsin , evolutionary biology , olfaction , genome , transducin , olfactory receptor , gene family , genetics , rhodopsin , neuroscience , retinal , retina , signal transduction , botany , g protein
Photoreceptors convey visual information and come in two flavors; dim-light and bright-light dedicated rod and cones. Both cell types feature highly specialized phototransduction cascades that convert photonic energy into intracellular signals. Although a substantial amount of phototransduction gene ohnologs are expressed either in rods or cones, visual guanylyl cyclases (GCs) involved in the calcium (Ca2+) dependent feedback regulation of phototransduction are neither rod nor cone specific. The co-existence of visual GCs in both photoreceptor types suggests that specialization of these ohnologs occurred despite their overlapping expression. Here, we analyze gene retention and inactivation patterns of vertebrate visual and closely related olfactory GCs following two rounds (2R) of vertebrate-specific whole-genome duplication events (2R WGD). Although eutherians generally use two visual and one olfactory GC, independent inactivation occurred in some lineages. Sauropsids (birds, lizards, snakes, turtles, and crocodiles) generally have only one visual GC (GC-E). Additionally, turtles (testodes) also lost the olfactory GC (GC-D). Pseudogenization in mammals occurred in specific species/families likely according to functional needs (i.e., many species with reduced vision only have GC-E). Likewise, some species not relying on scent marks lack GC-D, the olfactory GC enzyme. Interestingly, in the case of fish, no species can be found with fewer than three (two visual and one olfactory) genes and the teleost-specific 3R WGD can increase this number to up to five. This suggests that vision in fish now requires at least two visual GCs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom