z-logo
open-access-imgOpen Access
Human Spermatogenesis Tolerates Massive Size Reduction of the Pseudoautosomal Region
Author(s) -
Maki Fukami,
Yasuko Fujisawa,
Hiroyuki Ono,
Tomoko Jinno,
Tsutomu Ogata
Publication year - 2020
Publication title -
genome biology and evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.702
H-Index - 74
ISSN - 1759-6653
DOI - 10.1093/gbe/evaa168
Subject(s) - biology , pseudoautosomal region , spermatogenesis , genetics , computational biology , evolutionary biology , gene , y chromosome , endocrinology
Mammalian male meiosis requires homologous recombination between the X and Y chromosomes. In humans, such recombination occurs exclusively in the short arm pseudoautosomal region (PAR1) of 2.699 Mb in size. Although it is known that complete deletion of PAR1 causes spermatogenic arrest, no studies have addressed to what extent male meiosis tolerates PAR1 size reduction. Here, we report two families in which PAR1 partial deletions were transmitted from fathers to their offspring. Cytogenetic analyses revealed that a ∼400-kb segment at the centromeric end of PAR1, which accounts for only 14.8% of normal PAR1 and 0.26% and 0.68% of the X and Y chromosomes, respectively, is sufficient to mediate sex chromosomal recombination during spermatogenesis. These results highlight the extreme recombinogenic activity of human PAR1. Our data, in conjunction with previous findings from animal studies, indicate that the minimal size requirement of mammalian PARs to maintain male fertility is fairly small.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom