z-logo
open-access-imgOpen Access
Using basal area to estimate aboveground carbon stocks in forests: La Primavera Biosphere's Reserve, Mexico
Author(s) -
Arturo Balderas Torres,
Jon C. Lovett
Publication year - 2012
Publication title -
forestry an international journal of forest research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.747
H-Index - 63
eISSN - 1464-3626
pISSN - 0015-752X
DOI - 10.1093/forestry/cps084
Subject(s) - tree allometry , basal area , allometry , hectare , biomass (ecology) , forest inventory , forestry , carbon fibers , environmental science , greenhouse gas , biosphere , mathematics , ecology , geography , biology , forest management , biomass partitioning , algorithm , composite number , agriculture
Increasing use of woody plants for greenhouse gas mitigation has led to demand for rapid, cost-effective estimation of forest carbon stocks. Bole diameter is readily measured and basal area can be correlated to biomass and carbon through application of allometric equations. We explore different forms of allometric equations and analyse the potential to use of equations for individual trees to derive stand-level equations, where the basal area and the average diameter are used as explanatory variables. To test the relationships derived from published allometric equations, we used data from a forest inventory in the oak–pine forests in La Primavera (Mexico). Results show that in two forests with the same species and basal area, there will be more carbon where trees are larger. Allometric equations for individual trees can be transformed into stand-level equations. The values of average diameter weighted by the basal area for these equations can be based on a small sample of large trees once the local relationship between tree size and tree density per hectare is known. This approach could considerably reduce field data requirements in comparison with inventory methods based on enumeration of all trees for estimation of biomass and carbon

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom