Transcriptomic profiling of Clostridium difficile grown under microaerophillic conditions
Author(s) -
Nicole Giordano,
Jessica L. Hastie,
Paul E. Carlson
Publication year - 2018
Publication title -
pathogens and disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.983
H-Index - 105
ISSN - 2049-632X
DOI - 10.1093/femspd/fty010
Subject(s) - transcriptome , microbiology and biotechnology , biology , microaerophile , clostridium difficile , gastrointestinal tract , clostridium , bacteria , virulence , gene , antibiotics , genetics , gene expression , biochemistry
Clostridium difficile (Cd) is an anaerobic, spore-forming bacterium capable of colonizing the gastrointestinal tract of humans. Colonization usually occurs following antibiotic-induced disruption of the host microbiota, which also leads to an increase in oxygen within the gastrointestinal tract. We sought to understand how Cd responds to this microaerophilic condition that is likely experienced within the host. Transcriptome profiling showed differential regulation of genes involved in sugar metabolism, pyruvate metabolism and stress responses. These data provide insight into potential mechanisms of Cd adaptation to the host environment and should lead to the elucidation unknown mechanisms of Cd oxygen resistance and pathogenesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom