Cyclic di-AMP-mediated interaction between Mycobacterium tuberculosis ΔcnpB and macrophages implicates a novel strategy for improving BCG vaccination
Author(s) -
Yang Zhang,
Jun Yang,
Guangchun Bai
Publication year - 2018
Publication title -
pathogens and disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.983
H-Index - 105
ISSN - 2049-632X
DOI - 10.1093/femspd/fty008
Subject(s) - secretion , mycobacterium tuberculosis , microbiology and biotechnology , vaccination , pathogen , interferon , biology , virulence , wild type , tuberculosis , immune system , recombinant dna , interferon gamma , mutant , immunology , virology , gene , medicine , genetics , biochemistry , pathology
Cyclic di-AMP (c-di-AMP) has been shown to play an important role in bacterial physiology and pathogen-host interactions. We previously reported that deletion of the sole c-di-AMP phosphodiesterase-encoding gene (cnpB) in Mycobacterium tuberculosis (Mtb) led to significant virulence attenuation. In this study, we found that ΔcnpB of M. bovisbacillus Calmette-Guerin (BCG) was unable to secrete c-di-AMP, which differs from Mtb ΔcnpB. We infected bone marrow-derived macrophages (BMDMs) with c-di-AMP-associated mutants generated from both Mtb and BCG. Our results showed that upon infection with Mtb ΔcnpB, BMDMs of wildtype mice secreted a large amount of interferon-β (IFN-β) post-infection similarly as we reported previously. In contrast, the response was less pronounced with BMDMs isolated from cGAS-/- mice and was nearly abolished with BMDMs prepared from STING-/- mice. Deletion of the region of difference 1 (RD1) locus in Mtb ΔcnpB did not alter the c-di-AMP secretion of ΔcnpB but eliminated the IFN-β production in the infected cells. In contrast, neither BCG ΔcnpB nor a recombinant BCG ΔcnpB with a pRD1 cosmid induced a type I interferon response. Interestingly, multiple studies have demonstrated that type I IFN enhances BCG's immunity. Thus, amending BCG based on our findings might improve BCG vaccination.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom