z-logo
open-access-imgOpen Access
Evaluation of transcription levels of inlA, inlB, hly, bsh and prfA genes in Listeria monocytogenes strains using quantitative reverse-transcription PCR and ability of invasion into human CaCo-2 cells
Author(s) -
Manuela Tamburro,
Michela Lucia Sammarco,
Maria Grazia Ammendolia,
I Fanelli,
Fabio Minelli,
Giancarlo Ripabelli
Publication year - 2015
Publication title -
fems microbiology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.899
H-Index - 151
eISSN - 1574-6968
pISSN - 0378-1097
DOI - 10.1093/femsle/fnv018
Subject(s) - listeria monocytogenes , virulence , biology , serotype , gene , transcription (linguistics) , reverse transcription polymerase chain reaction , microbiology and biotechnology , genetics , gene expression , bacteria , linguistics , philosophy
Listeria monocytogenes virulence depends on the activity of well-characterized virulence factors. In this study, transcription levels of inlA, inlB, hly, bsh and prfA genes in L. monocytogenes strains, and the ability of invasion into CaCo-2 cells were investigated. Serotyping, multiplex-PCR for serovar identification and restriction fragment analysis of inlA were performed. Transcription levels and invasiveness were evaluated by quantitative reverse-transcription PCR and by in vitro assays, respectively. The isolates were of serovars 1/2a, 4b, 1/2c, 1/2b and 3a. Full-length inlA profiles were found for nine of ten clinical isolates, while five of seven cultures from foods showed truncated profile. The analysis of transcription levels of virulence factors encoding genes demonstrated a substantial inter-strain heterogeneity, with clinical strains showing higher levels for almost all genes than isolates from food. A correlation between transcription levels of inlA and inlB, as well as between bsh and prfA, was observed. Significant differences between clinical strains and food isolates in the invasion of CaCo-2 cells were found. Analysis of gene transcription and invasiveness of human cells suggests different virulence phenotypes among L. monocytogenes populations, and this characterization could be a useful tool for risk assessment purposes and for the development of public health strategies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here