z-logo
open-access-imgOpen Access
Microbial community structure and biodiversity of size-fractionated granules in a partial nitritation–anammox process
Author(s) -
Jinghuan Luo,
Hui Chen,
Xiaoyu Han,
Yan-Fang Sun,
Zhiguo Yuan,
Jianhua Guo
Publication year - 2017
Publication title -
fems microbiology ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.377
H-Index - 155
eISSN - 1574-6941
pISSN - 0168-6496
DOI - 10.1093/femsec/fix021
Subject(s) - biology , anammox , granule (geology) , microbial population biology , 16s ribosomal rna , bacteria , relative species abundance , community structure , ecology , abundance (ecology) , denitrification , denitrifying bacteria , genetics , chemistry , nitrogen , paleontology , organic chemistry
The performance of a granule-based partial nitritation-anammox process is expected to be affected by the granule size distribution, but little is known about the impact of granule size on microbial community structure and diversity. To reveal how the microbial composition and diversity vary with granule size, granules from a partial nitritation-anammox reactor were size-fractionated into five classes (<0.2, 0.2-0.5, 0.5-0.8, 0.8-1.0 and >1.0 mm). Microbial communities and diversity in these size-fractionated granules were investigated using 16S rRNA gene high-throughput sequencing. It was found that larger granules harbor more diverse microbial communities than small granules. Both quantitative PCR and 16S rRNA gene sequencing indicated that the abundance of anammox bacteria (dominated by Candidatus Brocadia) exhibited an increasing trend with granule size. In contrast, the abundance of ammonia-oxidizing bacteria (Nitrosomonas) decreased with increasing granule size. Moreover, larger granules harbored more diverse anammox bacteria, with four genera found in the largest granules while only two with limited abundance were detected in the smallest granules. The findings highlight an important role for granule size in shaping community structure and biodiversity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom