Shear bond strength of orthodontic brackets bonded to different ceramic surfaces
Author(s) -
Elham S. Abu Alhaija,
A. M. S. Al-Wahadni
Publication year - 2007
Publication title -
european journal of orthodontics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.252
H-Index - 84
eISSN - 1460-2210
pISSN - 0141-5387
DOI - 10.1093/ejo/cjm032
Subject(s) - materials science , premolar , ceramic , universal testing machine , adhesive , bond strength , composite material , dental porcelain , dentistry , dental bonding , stereo microscope , molar , ultimate tensile strength , medicine , layer (electronics)
This study was undertaken to measure the shear bond strength (SBS) of stainless steel brackets bonded to different ceramic surfaces, to compare the SBS of the different ceramics with each other and with conventional ceramo-metal porcelains, and to determine the mode of failure for each group following debonding. A total of 60 ceramic crowns were constructed on extracted teeth and divided into three equal groups as follows: In-Ceram ceramic crowns, IPS-Impress ceramic crowns, and conventional ceramo-metal porcelain. Standard edgewise metal premolar brackets were bonded to the prepared porcelain surfaces. After bonding, all samples were tested in shear mode on an Instron universal testing machine. Statistical analysis was undertaken using analysis of variance, LSD, and chi-squared tests. The results showed that the SBS for the ceramo-metal and the In-Ceram groups were comparable, with mean values of 80.54 +/- 13.44 N and 78.87 +/- 13.47 N, respectively. The IPS-Impress group showed the weakest SBS which averaged 67.40 +/- 8.99 N. This was significantly lower than that of the conventional ceramo-metal porcelain (P < 0.001) and the In-Ceram surface (P < 0.01). The mode of failure in the ceramo-metal group was between the porcelain surface and adhesive and in the other two ceramic groups, between the brackets and adhesive (P < 0.001). The SBS of orthodontic brackets to the three tested ceramic surfaces were adequate for orthodontic use.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom