z-logo
open-access-imgOpen Access
Pre-reproductive stress and fluoxetine treatment in rats affect offspring A-to-I RNA editing, gene expression and social behavior
Author(s) -
Hiba Zaidan,
Gokul Ramaswami,
Manouchehr Barak,
Jin B Li,
Inna GaislerSalomon
Publication year - 2018
Publication title -
current zoology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.971
H-Index - 38
eISSN - 2058-5888
pISSN - 1674-5507
DOI - 10.1093/eep/dvy021
Subject(s) - rna editing , offspring , fluoxetine , biology , adar , prefrontal cortex , prenatal stress , gene expression , medicine , endocrinology , receptor , genetics , neuroscience , serotonin , gene , pregnancy , cognition
Adenosine to inosine RNA editing is an epigenetic process that entails site-specific modifications in double-stranded RNA molecules, catalyzed by adenosine deaminases acting on RNA (ADARs). Using the multiplex microfluidic PCR and deep sequencing technique, we recently showed that exposing adolescent female rats to chronic unpredictable stress before reproduction affects editing in the prefrontal cortex and amygdala of their newborn offspring, particularly at the serotonin receptor 5-HT2c (encoded by . Here, we used the same technique to determine whether post-stress, pre-reproductive maternal treatment with fluoxetine (5 mg/kg, 7 days) reverses the effects of stress on editing. We also examined the mRNA expression of ADAR enzymes in these regions, and asked whether social behavior in adult offspring would be altered by maternal exposure to stress and/or fluoxetine. Maternal treatment with fluoxetine altered editing in offspring amygdala at birth, enhanced the expression of mRNA and RNA editing enzymes in the prefrontal cortex, and reversed the effects of pre-reproductive stress on editing in this region. Furthermore, maternal fluoxetine treatment enhanced differences in editing of glutamate receptors between offspring of control and stress-exposed rats, and led to enhanced social preference in adult offspring. Our findings indicate that pre-gestational fluoxetine treatment affects patterns of RNA editing and editing enzyme expression in neonatal offspring brain in a region-specific manner, in interaction with pre-reproductive stress. Overall, these findings imply that fluoxetine treatment affects serotonergic signaling in offspring brain even when treatment is discontinued before gestation, and its effects may depend upon prior exposure to stress.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom