z-logo
open-access-imgOpen Access
Linker histone H1.5 is an underestimated factor in differentiation and carcinogenesis
Author(s) -
Marthe Behrends,
Olivia Engmann
Publication year - 2020
Publication title -
current zoology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.971
H-Index - 38
eISSN - 2058-5888
pISSN - 1674-5507
DOI - 10.1093/eep/dvaa013
Subject(s) - histone , histone h1 , carcinogenesis , linker , biology , genetics , computational biology , computer science , gene , operating system
Human histone H1.5, in mice called H1b, belongs to the family of linker histones (H1), which are key players in chromatin organization. These proteins sit on top of nucleosomes, in part to stabilize them, and recruit core histone modifying enzymes. Through subtype-specific deposition patterns and numerous post-translational modifications, they fine-tune gene expression and chromatin architecture, and help to control cell fate and homeostasis. However, even though it is increasingly implicated in mammalian development, H1.5 has not received as much research attention as its relatives. Recent studies have focused on its prognostic value in cancer patients and its contribution to tumorigenesis through specific molecular mechanisms. However, many functions of H1.5 are still poorly understood. In this review, we will summarize what is currently known about H1.5 and its function in cell differentiation and carcinogenesis. We will suggest key experiments that are required to understand the molecular network, in which H1.5 is embedded. These experiments will advance our understanding of the epigenetic reprogramming occurring in developmental and carcinogenic processes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom