z-logo
open-access-imgOpen Access
Colonization by Biological Control Agents on Post-Fire Regrowth of Invasive Lygodium microphyllum (Lygodiaceae)
Author(s) -
Aaron S. David,
Nicole Sebesta,
Anwar A. Abdel-Kader,
Ellen C. Lake
Publication year - 2020
Publication title -
environmental entomology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.749
H-Index - 89
eISSN - 1938-2936
pISSN - 0046-225X
DOI - 10.1093/ee/nvaa076
Subject(s) - biology , colonization , biological pest control , eriophyidae , invasive species , crambidae , weed , noxious weed , introduced species , botany , lepidoptera genitalia , mite , ecology
Integration of biological control with other management tactics such as prescribed burning is often important for successful invasive weed control. A critical step in this integration is determining whether the agent can colonize postburn growth of the weed. Here, we investigated postburn colonization by biological control agents on regrowth of the invasive vine Lygodium microphyllum (Cav.) R. Br. (Lygodiaceae, Old World climbing fern) in Florida. We monitored regrowth and subsequent colonization of two agents already established in Florida—the gall-inducing mite Floracarus perrepae Knihinicki and Boczek (Acariformes: Eriophyidae) and the foliage-feeding moth Neomusotima conspurcatalis Warren (Lepidoptera: Crambidae)—following three prescribed burns. We provide the first report of natural colonization by the F. perrepae mite and N. conspurcatalis moth on postburn L. microphyllum regrowth, and this colonization typically began 5–9 mo postburn. Furthermore, we report that L. microphyllum can recover to prefire levels of percent cover in as little as 5 mo. Our findings indicate that biological control of L. microphyllum has the potential to be integrated with prescribed burns.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom