z-logo
open-access-imgOpen Access
Representing glycophenotypes: semantic unification of glycobiology resources for disease discovery
Author(s) -
Jean-Philippe F. Gourdine,
Matthew Brush,
Nicole Vasilevsky,
Kent Shefchek,
Sebastian Köhler,
Nicolas Matentzoglu,
Monica MuñozTorres,
Julie A. McMurry,
Xingmin Zhang,
Peter N. Robinson,
Melissa Haendel
Publication year - 2019
Publication title -
database
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.406
H-Index - 62
ISSN - 1758-0463
DOI - 10.1093/database/baz114
Subject(s) - glycobiology , ontology , context (archaeology) , glycomics , computer science , computational biology , open biomedical ontologies , glycan , data science , semantic web , information retrieval , biology , upper ontology , suggested upper merged ontology , genetics , epistemology , paleontology , philosophy , glycoprotein
While abnormalities related to carbohydrates (glycans) are frequent for patients with rare and undiagnosed diseases as well as in many common diseases, these glycan-related phenotypes (glycophenotypes) are not well represented in knowledge bases (KBs). If glycan-related diseases were more robustly represented and curated with glycophenotypes, these could be used for molecular phenotyping to help to realize the goals of precision medicine. Diagnosis of rare diseases by computational cross-species comparison of genotype-phenotype data has been facilitated by leveraging ontological representations of clinical phenotypes, using Human Phenotype Ontology (HPO), and model organism ontologies such as Mammalian Phenotype Ontology (MP) in the context of the Monarch Initiative. In this article, we discuss the importance and complexity of glycobiology and review the structure of glycan-related content from existing KBs and biological ontologies. We show how semantically structuring knowledge about the annotation of glycophenotypes could enhance disease diagnosis, and propose a solution to integrate glycophenotypes and related diseases into the Unified Phenotype Ontology (uPheno), HPO, Monarch and other KBs. We encourage the community to practice good identifier hygiene for glycans in support of semantic analysis, and clinicians to add glycomics to their diagnostic analyses of rare diseases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom