z-logo
open-access-imgOpen Access
A curated collection of transcriptome datasets to investigate the molecular mechanisms of immunoglobulin E-mediated atopic diseases
Author(s) -
Susie S.Y. Huang,
Fatima Al Ali,
Sabri Boughorbel,
Mohammed Toufiq,
Damien Chaussabel,
Mathieu Garand
Publication year - 2019
Publication title -
database
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.406
H-Index - 62
ISSN - 1758-0463
DOI - 10.1093/database/baz066
Subject(s) - annotation , concordance , transcriptome , metadata , computer science , computational biology , data science , biology , bioinformatics , world wide web , gene , gene expression , genetics
Prevalence of allergies has reached ~20% of population in developed countries and sensitization rate to one or more allergens among school age children are approaching 50%. However, the combination of the complexity of atopic allergy susceptibility/development and environmental factors has made identification of gene biomarkers challenging. The amount of publicly accessible transcriptomic data presents an unprecedented opportunity for mechanistic discoveries and validation of complex disease signatures across studies. However, this necessitates structured methodologies and visual tools for the interpretation of results. Here, we present a curated collection of transcriptomic datasets relevant to immunoglobin E-mediated atopic diseases (ranging from allergies to primary immunodeficiencies). Thirty-three datasets from the Gene Expression Omnibus, encompassing 1860 transcriptome profiles, were made available on the Gene Expression Browser (GXB), an online and open-source web application that allows for the query, visualization and annotation of metadata. The thematic compositions, disease categories, sample number and platforms of the collection are described. Ranked gene lists and sample grouping are used to facilitate data visualization/interpretation and are available online via GXB (http://ige.gxbsidra.org/dm3/geneBrowser/list). Dataset validation using associated publications showed good concordance in GXB gene expression trend and fold-change.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom