z-logo
open-access-imgOpen Access
A set of domain rules and a deep network for protein coreference resolution
Author(s) -
Chen Li,
Zhiqiang Rao,
Qinghua Zheng,
Xiangrong Zhang
Publication year - 2018
Publication title -
database
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.406
H-Index - 62
ISSN - 1758-0463
DOI - 10.1093/database/bay065
Subject(s) - coreference , computer science , discriminative model , event (particle physics) , artificial intelligence , set (abstract data type) , resolution (logic) , domain (mathematical analysis) , natural language processing , biomedical text mining , artificial neural network , machine learning , data mining , information retrieval , text mining , mathematical analysis , physics , mathematics , quantum mechanics , programming language
Current research of bio-text mining mainly focuses on event extractions. Biological networks present much richer and meaningful information to biologists than events. Bio-entity coreference resolution (CR) is a very important method to complete a bio-event's attributes and interconnect events into bio-networks. Though general CR methods have been studies for a long time, they could not produce a practically useful result when applied to a special domain. Therefore, bio-entity CR needs attention to better assist biological network extraction. In this article, we present two methods for bio-entity CR. The first is a rule-based method, which creates a set of syntactic rules or semantic constraints for CR. It obtains a state-of-the-art performance (an F1-score of 62.0%) on the community supported dataset. We also present a machine learning-based method, which takes use of a recurrent neural network model, a long-short term memory network. It automatically learns global discriminative representations of all kinds of coreferences without hand-crafted features. The model outperforms the previously best machine leaning-based method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom