RBPMetaDB: a comprehensive annotation of mouse RNA-Seq datasets with perturbations of RNA-binding proteins
Author(s) -
Jin Li,
Su-Ping Deng,
Jacob Vieira,
James D. Thomas,
Valerio Costa,
Ching-San Tseng,
Franjo Ivankovic,
Alfredo Ciccodicola,
Peng Yu
Publication year - 2018
Publication title -
database
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.406
H-Index - 62
ISSN - 1758-0463
DOI - 10.1093/database/bay054
Subject(s) - rna binding protein , computational biology , polyadenylation , rna , rna splicing , biology , annotation , gene , genetics
RNA-binding proteins (RBPs) may play a critical role in gene regulation in various diseases or biological processes by controlling post-transcriptional events such as polyadenylation, splicing and mRNA stabilization via binding activities to RNA molecules. Owing to the importance of RBPs in gene regulation, a great number of studies have been conducted, resulting in a large amount of RNA-Seq datasets. However, these datasets usually do not have structured organization of metadata, which limits their potentially wide use. To bridge this gap, the metadata of a comprehensive set of publicly available mouse RNA-Seq datasets with perturbed RBPs were collected and integrated into a database called RBPMetaDB. This database contains 292 mouse RNA-Seq datasets for a comprehensive list of 187 RBPs. These RBPs account for only ∼10% of all known RBPs annotated in Gene Ontology, indicating that most are still unexplored using high-throughput sequencing. This negative information provides a great pool of candidate RBPs for biologists to conduct future experimental studies. In addition, we found that DNA-binding activities are significantly enriched among RBPs in RBPMetaDB, suggesting that prior studies of these DNA- and RNA-binding factors focus more on DNA-binding activities instead of RNA-binding activities. This result reveals the opportunity to efficiently reuse these data for investigation of the roles of their RNA-binding activities. A web application has also been implemented to enable easy access and wide use of RBPMetaDB. It is expected that RBPMetaDB will be a great resource for improving understanding of the biological roles of RBPs.Database URL: http://rbpmetadb.yubiolab.org.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom