z-logo
open-access-imgOpen Access
BioDataome: a collection of uniformly preprocessed and automatically annotated datasets for data-driven biology
Author(s) -
Kleanthi Lakiotaki,
Nikolaos Vorniotakis,
Michail Tsagris,
Γεώργιος Γεωργακόπουλος,
Ioannis Tsamardinos
Publication year - 2018
Publication title -
database
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.406
H-Index - 62
ISSN - 1758-0463
DOI - 10.1093/database/bay011
Subject(s) - computer science , pipeline (software) , upload , data mining , preprocessor , information retrieval , biological database , database , bioinformatics , world wide web , artificial intelligence , biology , programming language
Biotechnology revolution generates a plethora of omics data with an exponential growth pace. Therefore, biological data mining demands automatic, 'high quality' curation efforts to organize biomedical knowledge into online databases. BioDataome is a database of uniformly preprocessed and disease-annotated omics data with the aim to promote and accelerate the reuse of public data. We followed the same preprocessing pipeline for each biological mart (microarray gene expression, RNA-Seq gene expression and DNA methylation) to produce ready for downstream analysis datasets and automatically annotated them with disease-ontology terms. We also designate datasets that share common samples and automatically discover control samples in case-control studies. Currently, BioDataome includes ∼5600 datasets, ∼260 000 samples spanning ∼500 diseases and can be easily used in large-scale massive experiments and meta-analysis. All datasets are publicly available for querying and downloading via BioDataome web application. We demonstrate BioDataome's utility by presenting exploratory data analysis examples. We have also developed BioDataome R package found in: https://github.com/mensxmachina/BioDataome/.Database URL: http://dataome.mensxmachina.org/.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom