z-logo
open-access-imgOpen Access
ABCMdb reloaded: updates on mutations in ATP binding cassette proteins
Author(s) -
Hedvig Tordai,
Kristóf Jakab,
Gergely Gyimesi,
Kinga András,
Anna Brózik,
Balázs Sarkadi,
Tamás Hegedűs
Publication year - 2017
Publication title -
database
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.406
H-Index - 62
ISSN - 1758-0463
DOI - 10.1093/database/bax023
Subject(s) - in silico , computational biology , mutation , atp binding cassette transporter , hum , database , genetics , biology , function (biology) , gene , computer science , transporter , art , performance art , art history
ABC (ATP-Binding Cassette) proteins with altered function are responsible for numerous human diseases. To aid the selection of positions and amino acids for ABC structure/function studies we have generated a database, ABCMdb (Gyimesi et al. , ABCMdb: a database for the comparative analysis of protein mutations in ABC transporters, and a potential framework for a general application. Hum Mutat 2012; 33:1547-1556.), with interactive tools. The database has been populated with mentions of mutations extracted from full text papers, alignments and structural models. In the new version of the database we aimed to collect the effect of mutations from databases including ClinVar. Because of the low number of available data, even in the case of the widely studied disease-causing ABC proteins, we also included the possible effects of mutations based on SNAP2 and PROVEAN predictions. To aid the interpretation of variations in non-coding regions, the database was supplemented with related DNA level information. Our results emphasize the importance of in silico predictions because of the sparse information available on variants and suggest that mutations at analogous positions in homologous ABC proteins have a strong predictive power for the effects of mutations. Our improved ABCMdb advances the design of both experimental studies and meta-analyses in order to understand drug interactions of ABC proteins and the effects of mutations on functional expression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom