Chemical entity recognition in patents by combining dictionary-based and statistical approaches
Author(s) -
Saber A. Akhondi,
Ewoud Pons,
Zubair Afzal,
Herman van Haagen,
Benedikt Becker,
Kristina Hettne,
Erik M. van Mulligen,
Jan A. Kors
Publication year - 2016
Publication title -
database
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.406
H-Index - 62
ISSN - 1758-0463
DOI - 10.1093/database/baw061
Subject(s) - computer science , task (project management) , search engine indexing , conditional random field , classifier (uml) , artificial intelligence , word (group theory) , natural language processing , training set , named entity recognition , set (abstract data type) , test set , information retrieval , data mining , machine learning , linguistics , philosophy , management , programming language , economics
We describe the development of a chemical entity recognition system and its application in the CHEMDNER-patent track of BioCreative 2015. This community challenge includes a Chemical Entity Mention in Patents (CEMP) recognition task and a Chemical Passage Detection (CPD) classification task. We addressed both tasks by an ensemble system that combines a dictionary-based approach with a statistical one. For this purpose the performance of several lexical resources was assessed using Peregrine, our open-source indexing engine. We combined our dictionary-based results on the patent corpus with the results of tmChem, a chemical recognizer using a conditional random field classifier. To improve the performance of tmChem, we utilized three additional features, viz. part-of-speech tags, lemmas and word-vector clusters. When evaluated on the training data, our final system obtained an F-score of 85.21% for the CEMP task, and an accuracy of 91.53% for the CPD task. On the test set, the best system ranked sixth among 21 teams for CEMP with an F-score of 86.82%, and second among nine teams for CPD with an accuracy of 94.23%. The differences in performance between the best ensemble system and the statistical system separately were small.Database URL: http://biosemantics.org/chemdner-patents.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom