z-logo
open-access-imgOpen Access
Do syntactic trees enhance Bidirectional Encoder Representations from Transformers (BERT) models for chemical–drug relation extraction?
Author(s) -
Anfu Tang,
Louise Deléger,
Robert Bossy,
Pierre Zweigenbaum,
Claire Nédellec
Publication year - 2022
Publication title -
database
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.406
H-Index - 62
ISSN - 1758-0463
DOI - 10.1093/database/baac070
Subject(s) - computer science , abstract syntax tree , natural language processing , syntax , artificial intelligence , transformer , abstract syntax , relationship extraction , encoder , parsing , information extraction , source code , syntax error , programming language , physics , quantum mechanics , voltage , operating system

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom