Mismatched light and temperature cues disrupt locomotion and energetics via thyroid-dependent mechanisms
Author(s) -
Amélie Le Roy,
Frank Seebacher
Publication year - 2020
Publication title -
conservation physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.942
H-Index - 37
ISSN - 2051-1434
DOI - 10.1093/conphys/coaa051
Subject(s) - acclimatization , biology , oxygen , energetics , thyroid , mosquitofish , latitude , hormone , gambusia , ecology , endocrinology , chemistry , fishery , organic chemistry , geodesy , fish <actinopterygii> , geography
Animals integrate information from different environmental cues to maintain performance across environmental gradients. Increasing average temperature and variability induced by climate change can lead to mismatches between seasonal cues. We used mosquitofish ( Gambusia holbrooki ) to test the hypotheses that mismatches between seasonal temperature and light regimes (short days and warm temperature and vice versa) decrease swimming performance, metabolic rates and mitochondrial efficiency and that the responses to light and temperature are mediated by thyroid hormone. We show that day length influenced thermal acclimation of swimming performance through thyroid-dependent mechanisms. Oxygen consumption rates were influenced by acclimation temperature and thyroid hormone. Mitochondrial substrate oxidation rates (state three rates) were modified by the interaction between temperature and day length, and mitochondrial efficiency (P/O ratios) increased with warm acclimation. Using P/O ratios to calibrate metabolic (oxygen consumption) scope showed that oxygen consumption did not predict adenosine triphosphate (ATP) production. Unlike oxygen consumption, ATP production was influenced by day length in a thyroid-dependent manner. Our data indicate that oxygen consumption alone should not be used as a predictor of ATP production. Overall, the effects of thyroid hormone on locomotion and energetics were reversed by mismatches such as warm temperatures on short days. We predict that mid to high latitudes in North America and Asia will be particularly affected by mismatches as a result of high seasonality and predicted warming over the next 50 years.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom