Role of Epithelial–Endothelial Cell Interaction in the Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection
Author(s) -
Kenrie P. Y. Hui,
Man-chun Cheung,
Ka-ling Lai,
KaChun Ng,
John Chi-Wang Ho,
Malik Peiris,
John Nicholls,
Mcw Chan
Publication year - 2021
Publication title -
clinical infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.44
H-Index - 336
eISSN - 1537-6591
pISSN - 1058-4838
DOI - 10.1093/cid/ciab406
Subject(s) - chemokine , immunology , proinflammatory cytokine , pathogenesis , immune system , cytokine , downregulation and upregulation , cell adhesion molecule , medicine , endothelial stem cell , biology , inflammation , in vitro , biochemistry , gene
Background The coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to threaten public health globally. Patients with severe COVID-19 disease progress to acute respiratory distress syndrome, with respiratory and multiple organ failure. It is believed that dysregulated production of proinflammatory cytokines and endothelial dysfunction contribute to the pathogenesis of severe diseases. However, the mechanisms of SARS-CoV-2 pathogenesis and the role of endothelial cells are poorly understood. Methods Well-differentiated human airway epithelial cells were used to explore cytokine and chemokine production after SARS-CoV-2 infection. We measured the susceptibility to infection, immune response, and expression of adhesion molecules in human pulmonary microvascular endothelial cells (HPMVECs) exposed to conditioned medium from infected epithelial cells. The effect of imatinib on HPMVECs exposed to conditioned medium was evaluated. Results We demonstrated the production of interleukin-6, interferon gamma-induced protein-10, and monocyte chemoattractant protein-1 from the infected human airway cells after infection with SARS-CoV-2. Although HPMVECs did not support productive replication of SARS-CoV-2, treatment of HPMVECs with conditioned medium collected from infected airway cells induced an upregulation of proinflammatory cytokines, chemokines, and vascular adhesion molecules. Imatinib inhibited the upregulation of these cytokines, chemokines, and adhesion molecules in HPMVECs treated with conditioned medium. Conclusions We evaluated the role of endothelial cells in the development of clinical disease caused by SARS-CoV-2 and the importance of endothelial cell–epithelial cell interaction in the pathogenesis of human COVID-19 diseases.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom