Evaluation of Severe Acute Respiratory Syndrome Coronavirus 2 Transmission Mitigation Strategies on a University Campus Using an Agent-Based Network Model
Author(s) -
Ravi Goyal,
John R. Hotchkiss,
Robert T. Schooley,
Victor De Gruttola,
Natasha K. Martin
Publication year - 2021
Publication title -
clinical infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.44
H-Index - 336
eISSN - 1537-6591
pISSN - 1058-4838
DOI - 10.1093/cid/ciab037
Subject(s) - outbreak , social distance , transmission (telecommunications) , psychological intervention , basic reproduction number , covid-19 , public health , medicine , computer science , environmental health , virology , telecommunications , disease , infectious disease (medical specialty) , population , nursing , psychiatry
Universities are faced with decisions on how to resume campus activities while mitigating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) risk. To provide guidance for these decisions, we developed an agent-based network model of SARS-CoV-2 transmission to assess the potential impact of strategies to reduce outbreaks. The model incorporates important features related to risk at the University of California San Diego. We found that structural interventions for housing (singles only) and instructional changes (from in-person to hybrid with class size caps) can substantially reduce the basic reproduction number, but masking and social distancing are required to reduce this to at or below 1. Within a risk mitigation scenario, increased frequency of asymptomatic testing from monthly to twice weekly has minimal impact on average outbreak size (1.1-1.9), but substantially reduces the maximum outbreak size and cumulative number of cases. We conclude that an interdependent approach incorporating risk mitigation, viral detection, and public health intervention is required to mitigate risk.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom